Genetic Engineering

Ch 13

13-1 Selective Breeding

• Used by humans to pass on desired traits

Tineke

Babylon Queen's Day

Carola

Ver

Black Magic

Anna

Lip Stick

Dedlliah

Candy

Avalanche

McINTOSH (Sweet with a tart tang, very juicy)

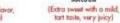
HONEYCRISP

(Sweet, tort, julicy,

tuper crisp}

very juicy)

(Delicately spicy and sweet, very julcy and crisp)


JONAGOLD Ploney sweet with a hint of tartness, (uicy)

GALA (Mildly sweet flavor, wper crisp)

GOLDEN DELICIOUS

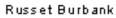
(Mild, sweet Bovor, very crisp)

GINGERGOLD (Sweet, yet mildly tart, fine textured and crisp)

MACOUN

13-1 Selective Breeding

- Luther Burbank (1849-1926)
- Disease resistant potatoes, Gravenstein apples, Shasta daisy



13-1 Hybridization

 Crossing dissimilar individuals to bring together the best of both organisms, like disease resistance and food production in Burbank's potatoes

Red Norland

Yukon Gold

Atlantic

Kufri Jyoti

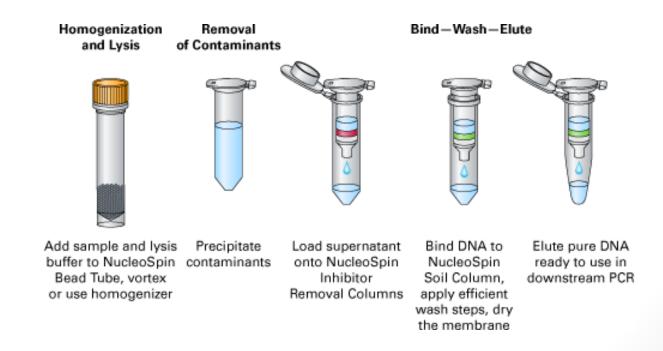
Austrian Crescent

13-1 Inbreeding

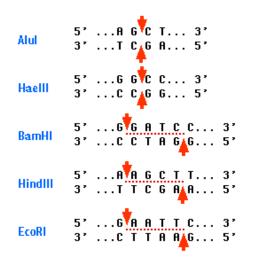
• Continued breeding of individuals with similar characteristics

13-1 Increasing Variation

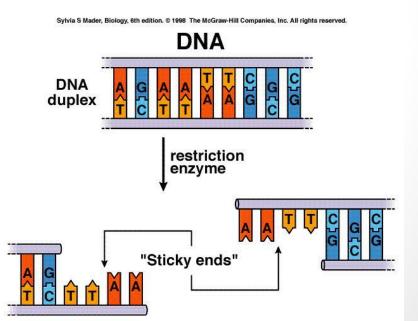
- Breeders can increase the genetic variation in a population by inducing mutations
- Mutations are the ultimate source of genetic variability
- Mutations occur spontaneously but frequency can be increased by radiation and chemicals
- Many mutations are harmful to the organism but some will produce desired characteristics
- Used to develop useful bacteria strains, like those that can break down oil and plastic


13-1 Polyploidy

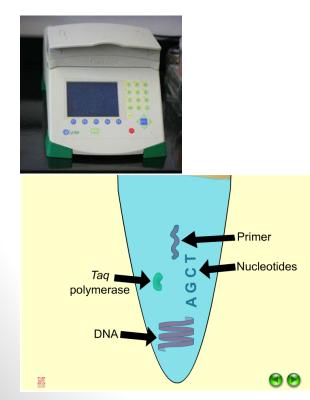
- Some drugs can prevent chromosomal separation in plants and are used to produce seeds that have double or triple the amount of chromosomes
- Polyploidy
- Usually fatal in animals but plants are better at tolerating it
- Makes plant and fruit bigger and stronger

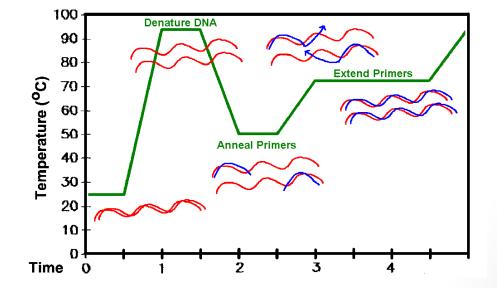


- DNA can now be extracted from cells, cut into pieces, sequenced, copied, and pasted back together
- Genetic engineering


 DNA extraction-cells can be broken open with enzymes and detergents and DNA can be separated from other molecules in cells

- Cutting DNA-using restriction endonucleases
- Cut at specific sequences
- Hundreds of restriction sites and enzymes
- Enzymes isolated from organisms like bacteria or viruses
- Example BamH1 or EcoR1

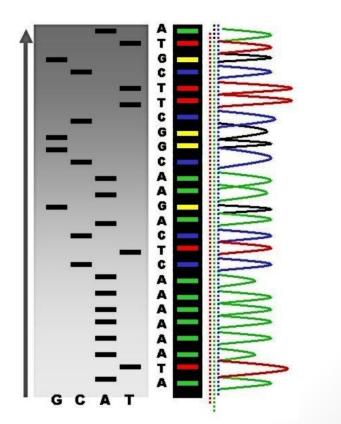

Alul and Haell produce blunt ends



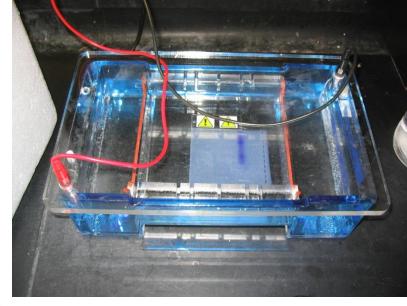
BamHI HindIII and EcoRI produce "sticky" ends

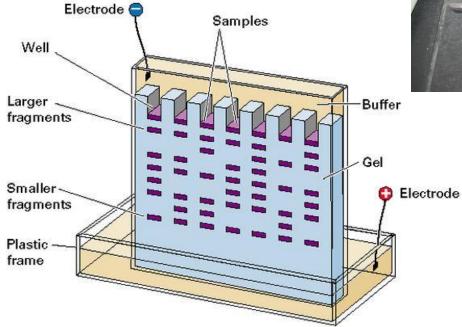
- Separating DNA and DNA fragments using gel electrophoresis
- Use a polymer gel like agarose or acrylamide-molecular sieve
- Pass electric current through
- DNA is (-) charged and moves in an electric field toward the (+) positive electrode
- Smaller ones move through gel faster, large one slower so can be separated based on size
- Can be used for analysis/diagnostic purposes or fragments can be recovered from gel and used for further studies or manipulation

- Making copies of DNA-Polymerase chain reaction-PCR
- Makes millions of copies of DNA by cycling through temperatures that allow DNA to unwind, primers to anneal or stick, and nucleotides to be added or extended

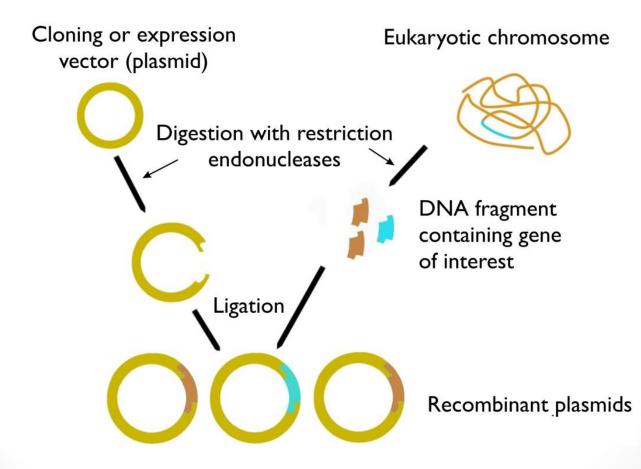


 Can read a DNA sequence by copying the DNA strand, making a complementary copy with fluorescent nucleotides to label the DNA copy then sequencer machine "reads" the sequence

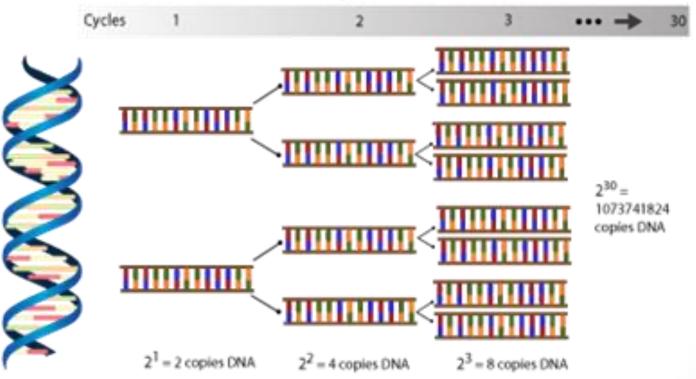

Gel:



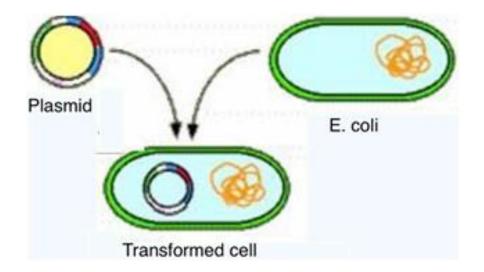
GCGAATGCGTCCACAACGCTACAGGTG GCGAATGCGTCCACAACGCTACAGGT GCGAATGCGTCCACAACGCTACAGG GCGAATGCGTCCACAACGCTACAG GCGAATGCGTCCACAACGCTACA GCGAATGCGTCCACAACGCTAC GCGAATGCGTCCACAACGCTA GCGAATGCGTCCACAACGCT GCGAATGCGTCCACAACGC GCGAATGCGTCCACAACG GCGAATGCGTCCACAAC GCGAATGCGTCCACAA GCGAATGCGTCCACA GCGAATGCGTCCAC GCGAATGCGTCCA GCGAATGCGTCC GCGAATGCGTC GCGAATGCGT GCGAATGCG GCGAATGC GCGAATG GCGAAT

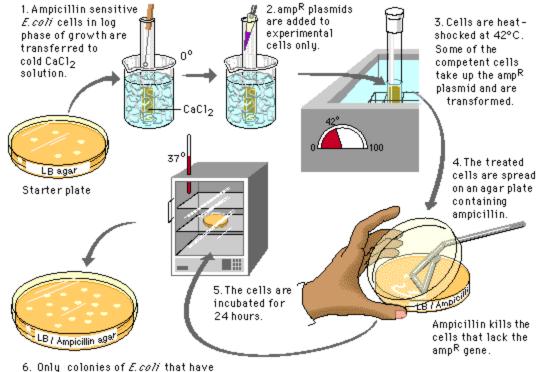


• Gel electrophoresis



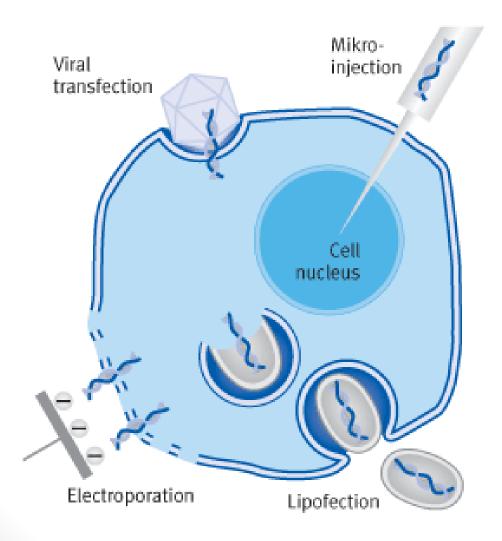
 Cutting with restriction endonucleases and pasting with ligase to make recombinant DNA


PCR amplification

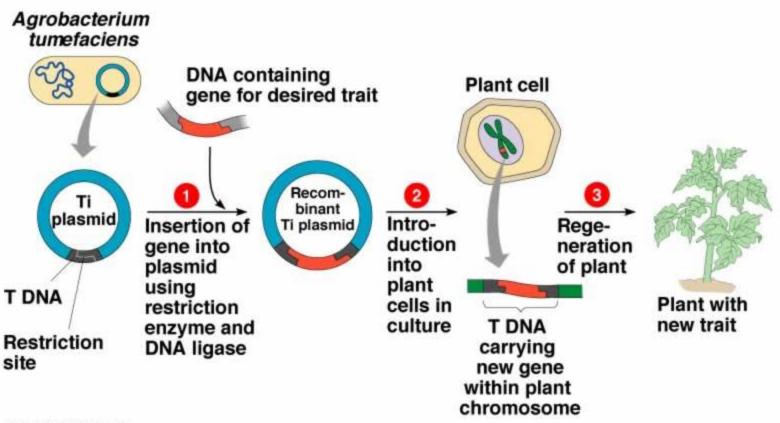

Chain Reaction, copies from copies produced

13-3 Cell Transformation

- Cell takes in external DNA in the form of a plasmid, a small circular DNA
- In bacteria, transformation
- In eukaryotic cells, transfection



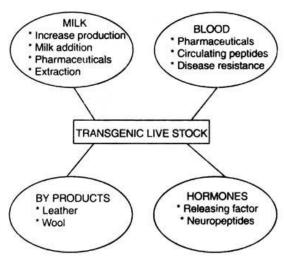
13-3 Cell Transformation



been transformed by the amp^R gene will grow.

13-3 Transfection

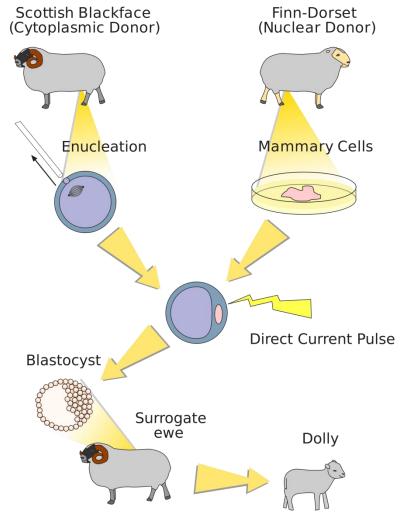
13-3 Plant cell transformation


CAddison Wesley Longman, Inc.

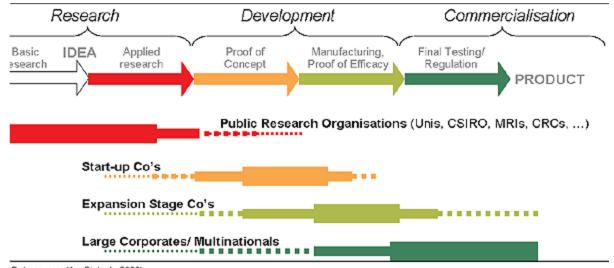
13-4 Applications of Genetic Engineering

- Transgenic organisms contain genes from other organisms
- Bacteria and yeast are used to make proteins cheaply and in great abundance
- Insulin, growth hormones, clotting factors
- Works because mechanism of gene expression (DNA-RNA-Protein) works the same in all organisms

13-4 Transgenic Bacteria and Animals



13-4 Transgenic Animals-Cloning



- Pharmaceuticals
 - Protropin HGH, Actimmune interferon, Herceptin anticancer antibody
- Industrial enzymes
 - Indiage cellulase, Purafect protease
- Agricultural products
 - Round up ready soybeans, New leaf potatoes pest resistant

- General steps
- 1. The coding region for a desired characteristic or protein is identified and isolated from a donor cell, confirmed by restriction digest and sequencing and pasted into a vector to form rDNA

 2. Recombinant cells are transformed/transfected with the rDNA and cells are assayed to confirm presence of the rDNA and expression of the protein

- 3. The recombinant cells are grown in culture at a small (fermentation) then a large (manufacturing) scale
- 4. Recombinant protein is isolated and purified from cell cultures, analyzed for purity and activity, then goes to market

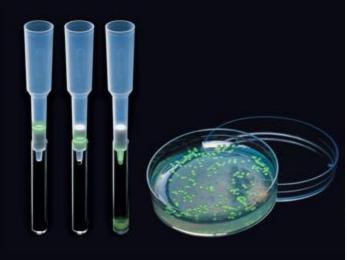
Data source: (AusBiotech, 2006).

- A product must be better produced by genetic engineering than by conventional methods in order to justify the investment in R&D
 - Scale
 - Safety
 - Ease of isolation/production
 - Chymosin/Renin
 - Renin isolated from calf gut

• Chymosin produced in yeast cells (Chymax by Genencor)

8.3 After Transformation

- Scale up-need more than a few colonies to purify enough protein to use as a product
- 1-2L spinner flasks are appropriate size for R&D
- For production, fermentation tanks 10K liters
- Require sterile conditions and strict protocols for cleaning and sterilizing equipment


8.3 After Transformation

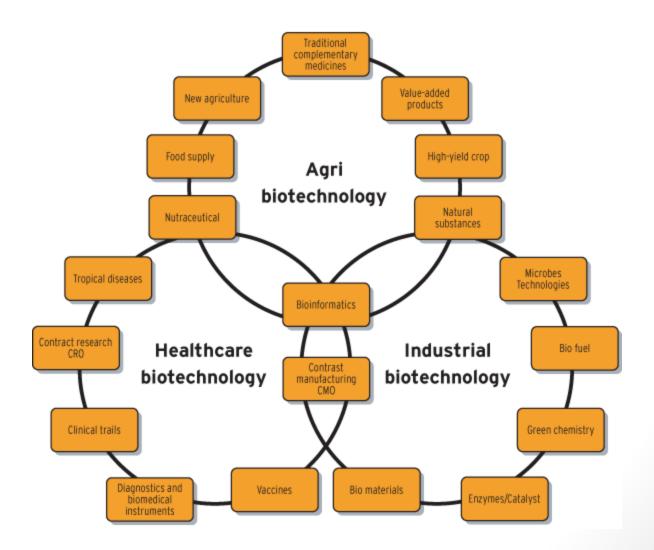
- Using assays during scale up
- Test at every step of scale up and production for
 - Presence
 - Activity
 - Concentration
- Conducted by Quality Control (QC) Department

8.4 Fermentation, Manufacturing and GMP

- Fermentation in biotechnology is growing cells under optimal conditions for maximum cell division and product production
- Highly controlled large scale growth
- A seed colony is a colony growing on a petrie dish
- Because of exponential growth (every 20 minutes the number of cells in the culture double) large cultures can quickly be reached as long as optimal conditions are maintained
- Then product is isolated

8.4 Fermentation, Manufacturing and GMP

- After product isolation it must be formulated
- Prepared for delivery and storage
 - Route of drug administration must be determined-oral, IV, etc
 - Testing and market analysis involved
- Often an entire department is devoted to this



8.4 Fermentation, Manufacturing and GMP

 During manufacture, current good manufacturing practices (cGMP) must be followed

What is Biotechnology

- Biotechnology Products
- More nutritious foods
- Better medicine
- Improved living conditions
- Cleaner environment
- Commonality is that the potential product must make it through the product pipeline and generate sales in a reasonable amount of time and at a reasonable cost

• Product pipeline-what is that?

			PHASE			NEW DRUG
CANDIDATE	RESEARCH	PRECLINICAL	1	2	3	APPLICATION
Ambrisentan	Pulmonary Arterial Hypertension					
Aztreonam Lysine for Inhalation	Cystic Fibrosis					
Tenofovir Disoproxil Fumarate	Chronic Hepatitis B					
Darusentan	Resistant Hypertension	1				
GS 9137 integrase inhibitor	HIV/AIDS					
GS 9190 polymerase inhibitor	Hepatitis C					
Small Molecule Therapeutics	Viral Infections					
Small Molecule Therapeutics	Cardiopulmonary					
Inhaled Therapeutics	Respiratory Infections					

Product development plan

- Does the product meet a critical need?
- Who will use it? Is the market large enough? How many customers?
- Do preliminary data support that the product will work? Will the product do what the company claims?
- Can patent protection be secured? Can the company prevent another company from making it?
- Can the company make a profit? How much will it cost to produce and how much can it be sold for?

- Product development is based on criteria set by the
 - Food and Drug Administration (FDA)
 - Environmental Protection Agency (EPA)
 - United States Department of Agriculture (USDA)

- Clinical Trials
- Test potential therapeutics in human patients
- Three phases
- I. Test on terminally ill patients with no other treatment options
 - Is it safe? Does it work?
 - How should it be given/ What is the dose?
 - Small sample size (a dozen patients)
- II. Further safety tests
 - How well does it work?
 - Tested with a specific type of cancer
- III. Test compared to other drugs used for the same condition
 - Does it work better?
- Overseen by the FDA

Careers in the Biotechnology Industry

- Funding is necessary for research and development (R&D) and manufacturing
- Raw materials, utilities and building maintenance
- Majority of budget spent on employee salaries and benefits
- Once a product starts making money, the profits repay the cost, and additional profit is reinvested

Careers in the Biotechnology Industry

- Scientific and non-scientific jobs
- Scientific-R&D, manufacturing and production, clinical research, quality control
- Non-Scientific-information systems, marketing and sales, regulatory affairs, administration/legal affairs

Careers in the Biotechnology Industry

- HS Diploma-Lab assistant
- Certificate (1-2 years community or career college)-Biotechnician
- Bachelor's Degree (4 yrs college)-Research Associate
- Masters degree (1-3 yrs graduate school)- Research Associate
- Doctorate (4-6 yrs after bachelor's degree)-Scientist
- Postdoctorate (1 or more years after doctorate)-Scientist