Digestive and Excretory Systems

Chapter 38

38-1 Food and Nutrition

- Energy in food can be measured in calories
- Calories (c)
- Kilocalories (kcal)=1000 calories
- Avg teenager needs 2200-2800 kcals/day
- Food provides fuel, minerals and vitamins
- Vitamins and minerals are co-factors that help all your enzymes in your cells work

38-1 Food and Nutrition

- Nutrients (macromolecules)-carb, fats, proteins
- vitamins, minerals and water (at least 1L/day)
- Carbs-energy
- Fats-protect organs, insulate body and store energy, produce myelin on nerves, help to make some hormones
- Proteins-growth and repair, regulatory functions, transport in cells

38-1 Food and Nutrition

- Vitamins-work with enzymes to regulate cell functions
- Minerals-needed in small amounts-Calcium, Iron, Magnesium

38-1 Food and Nutrition

Vitamin B12 equivalent to 167 Eggs

Vitamin D equivalent to 4 Cups of Milk

38-1 Food and Nutrition

MINERALS	FUNCTIONS / BENEFITS	FOOD SOURCES
Calcium	Builds bones, teeth, helps blood clot, assists nerves, muscles \& heart to function	Milk, cheese, yogurt, buttermilk, tofu
Phosphorous	Builds teeth and bones, helps body get energy fromfoods	Milk, milk products, meat, fish, poultry, eggs,nuts, dried peas \& beans
Iron	Forms part of red blood cells, helps body get energy fromfoods	Liver, organ meats, egg yolk, meat, poultry, oysters, whole-grain \& enriched breads \& cereals, dried peas \& beans
Sodium	Controls water balance, regulates nerve impulses \& muscle contractions	Salt, meat, fish, poultry, milk, and milk products
Potassium	Helps control water balance, regulates nerve impulses, muscle contractions \& heart rhythm	Fruits, vegetables, meat, fish, poultry, milk and mik products
lodine	Regulates energy	Seafood, iodized salt
Magnesium	Part of teeth \& bones, helps body use carbohydrates, helps to regulate nerve \& muscle contractions	Whole-grain cereal, muts, dried peas \& beans, milk, meat, leafy greens
Copper	Builds body cells, aids digestion \& absorption, lubricates joints \& organs, regulates body temperature	All liquids- water, coffee, tea, soft drinks, fruit \& vegetable juices, milk, ice

38-1 Food and Nutrition

38-1 Food and Nutrition

38-2 Digestion

The Components of the Digestive System

38-2 Digestion

- Function is to help convert molecules in food to simpler molecules that can be absorbed and used by cells
- Teeth-mechanical work of digestion-grinding, cutting, tearing
- Saliva-moistens food, contains amylase that breaks down starch
- Together, make a bolus of food

38-2 Digestion

- Esophagus-takes bolus from mouth to stomach
- Swallowing and peristaltic (squeezing)movement of smooth muscles in esophagus push food through

38-2 Digestion

- Stomach-large muscular sac. Can stretch, and contracts to churn food
- Chemical and mechanical digestion
- Chemical digestion-lining of stomach has gastric glands that produce mucous, acid and pepsin
- Acid activates pepsin, which starts to break down proteins

38-2 Digestion

- Mechanical digestion-churning of muscles in stomach mixes the food, mucous, acid and pepsin, makes chyme
- Chyme moves from stomach through pyloric valve to small intestine

38-2 Digestion

- Pancreas and Liver
- Chyme moves through pyloric valve into small intestine where most chemical digestion takes place
- Duodenum is the first part of the small intestine
- In the duodenum chyme mixes with enzymes and digestive fluids from the liver and pancreas

38-2 Digestion

38-2 Digestion

Summary of digestive enzymes

Where	What	Result
Salivary glands	Amylase	Polysacchs.
Stomach	Pepsin	Proteins
Pancreas	Lipase	Lipids
	Trypsin	Proteins
	Chymotrypsin	Proteins
	Nucleotidase	DNA/RNA
Brush-border	Peptidases	Protein
	Nucleases	Dinucleotides
	Lactase	Lactose
	Maltase	Maltose
	Sucrase	Sucrose

38-2 Digestion

- Pancreas
- Just below the stomach
- Produces hormones that regulate sugar level
- Produces enzymes that break down carbs, lipids, proteins and nucleic acids
- Produces sodium bicarbonate that neutralizes stomach acid as it reaches the small intestine so the digestive enzyme can function

38-2 Digestion

- Liver
- Above the stomach, assists the pancreas
- Produces bile (loaded with lipids and salt) which acts like a detergent dissolving and dispersing fats in food so then lipases can break down the fat droplets
- Bile is stored in gall bladder

38-2 Digestion

- Small intestine
- Duodenum is shortest part
- Jejenum and ileum are 2 other parts, 3 meters long
- Most nutrient absorption occurs here-carbs and protein into capillaries, fats into the lymph vessels (lacteals)
- Villi create lots of surface area for diffusion and active transport
- Slow wave-like motion of the smooth muscles keeps everything moving

38-2 Digestion

38-2 Digestion

- Large Intestine-most food here is nutrient free
- Water, cellulose and undigested material is left
- Primary job is to remove water from undigested material
- Just below the entry to the LI is the appendix-in some animals contains microbes that digest cellulose
- Bacteria in LI produce enzymes that produce useful compounds like vitamin K
- When things go wrong here-diarrhea

38-3 Excretory System

- Helps maintain homeostasis
- Eliminates excess salts, carbon dioxide, urea
- Skin, lungs and kidneys

38-3 Excretory System

- Kidneys
- 2, size of clenched fists
- Ureter exits kidney and goes to bladder
- Bladder stores urine
- Waste rich blood enters kidney through renal artery
- Excess water, urea and salt is collected and made into urine
- Clean filtered blood exits through renal vein

38-3 Excretory System

38-3 Excretory System

- Kidney structure
- Inner part-medulla
- Outer part-cortex
- Functional units are nephrons
- 1 million nephrons/kidney
- Nephrons are in cortex except for loops of Henle, in medulla
- Each nephron has its own arteriole

38-3 Excretory System

Bowman's capsule

38-3 Excretory System

- Blood passes from arteriole to capillaries, gets filtered
- Diffusion of waste occurs into collecting duct which leads to ureter, then to bladder
- Blood exits nephron through venule
- Substances get filtered, reabsorbed or secreted

38-3 Excretory System

- Filtration-Blood gets filtered in a network of capillaries called glomerulus nested in a Bowman's capsule, inside the nephron
- Blood is under pressure, and capillaries are permeable
- Filtrate contains water, urea, glucose, salt, amino acids and some vitamins

38-3 Excretory System

- Reabsorption and secretion-Kidneys filter all the blood every 45 minutes
- Not all filtrate is excreted, most of it is reabsorbed
- Nutrients, amino acids and glucose
- Hydrogen ions (H^{+}, makes solutions acidic) are secreted into the filtrate through capillaries
- After reabsorption, called urine
- Urine is concentrated in the loops of Henle to conserve water
- Urine stored in bladder until released into urethra

38-3 Excretory System

- Kidney function is controlled by composition of the blood
- More water =more reabsorption
- More salt=less reabsorption
- Wants to keep a constant salt concentration and pH
- Works by diffusion and osmosis

38-3 Homeostasis by Machine

